a2 United States Patent

Malkiman et al.

US009244749B2

10) Patent No.: US 9,244,749 B2

(54) END-TO-END APPLICATION TRACKING
FRAMEWORK

(71) Applicant: Qwest Communications International
Inc., Denver, CO (US)

(72) Inventors: Igor I. Malkiman, Bexley, OH (US);
Chauncey G. Powis, Conifer, CO (US);
Tyson Matthew Bunch, El Dorado
Hills, CA (US)

(73) Assignee: Qwest Communications International
Inc., Denver, CO (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

(21) Appl. No.: 14/747,228
(22) Filed: Jun. 23,2015

(65) Prior Publication Data
US 2015/0301876 Al Oct. 22, 2015

Related U.S. Application Data

(63) Continuation of application No. 13/073,504, filed on
Mar. 28, 2011, now Pat. No. 9,098,612.

(60) Provisional application No. 61/428,709, filed on Dec.

30, 2010.

(51) Int.CL
GO6F 3/00 (2006.01)
GO6F 9/44 (2006.01)
GO6F 9/46 (2006.01)
GO6F 13/00 (2006.01)
GO6F 9/54 (2006.01)
GO6F 17/30 (2006.01)

Instantiate Application Camponent

Regiser Sop T and Buraton of
o

Cantinue Recuast Pracsssing

Perorm

fecsive Incoming
(Request for Proces:

‘Component
Gall Chilg?

Blocks

T TE0-150
for Additional Calls

(45) Date of Patent: *Jan. 26, 2016

(52) US.CL
CPC GOGF 9/546 (2013.01); GO6F 17/30312
(2013.01)

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
7,194,664 B1* 3/2007 Fungetal ... 714/45

9,098,612 B2 82015 Malkiman et al.
2007/0207800 Al 9/2007 Daley et al.

2008/0195369 Al* 82008 Duyanovichetal. 703/22
2012/0174120 Al 7/2012 Malkiman et al.
OTHER PUBLICATIONS

T. Parsons, A. Mos and J. Murphy, “Non-intrusive end-to-end
runtime path tracing for J2EE systems,” Aug. 2006, The Institute of
Engineering and Technology, IEE Proc.-Softw., vol. 153, No. 4, pp.
149-161, retrieved from http://ieeexplore.ieee.org/stamp/stamp.
jsp?arnumber=01681667 on Jun. 11, 2014.*

(Continued)

Primary Examiner — H S Sough

Assistant Examiner — William C Wood

(74) Attorney, Agent, or Firm — Swanson & Bratschun,
LL.C.

(57) ABSTRACT

Novel tools and techniques for tracing application execution
and performance. Some of the tools provide a framework for
monitoring the execution and/or performance of applications
in an execution chain. In some cases, the framework can
accomplish this monitoring with a few simple calls to an
application programming interface on an application server.
In other cases, the framework can provide for the passing of
traceability data in protocol-specific headers of existing inter-
application (and/or intra-application) communication proto-
cols.

21 Claims, 8 Drawing Sheets

’/—100

Messags
sing)

Does Application

Complate Request Processing

Register Stop Time and Duration of
Request Processing

US 9,244,749 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS
T. Parsons, A. Mos and J. Murphy, “Non-instrusive end-to-end
runtime path tracing for J2EE systems,” Aug. 2006, The Institute of
Engineering and Technology, IEE Proc.-Softw., vol. 153, No. 4, pp.
149-161, retrieved from http://iecexplore.ieee.org/sta.
U.S. Appl. No. 13/073,504; Final Rejection dated Oct. 21, 2014; 40

pages.

U.S. Appl. No. 13/073,504; Issue Notification dated Jul. 15, 2015; 1
page.

U.S. Appl. No. 13/073,504; Non-Final Rejection dated Jun. 18,2014;
40 pages.

U.S. Appl. No. 13/073,504; Notice of Allowance dated Mar. 25,
2015; 43 pages.

* cited by examiner

U.S. Patent

FIG. 1

Jan. 26, 2016 Sheet 1 of 8

Instantiate Application Component

w

Receive Incoming Message
(Request for Processing)

v

Register Start Time of Reguest for
Processing

v

Start Request Processing

Does Application
Component
Call Child?

125

Register Time of Call

v

Call Child Application Component

v

Receive Result from Child Application

v

Register Stop Time and Duration of
Call

v

-~
AN
i

Continue Request Processing

v

-
N
S

Perform Blocks 130-150
for Additional Calls

r

Complete Request Processing

v

160

Register Stop Time and Duration of
Request Processing

s/

US 9,244,749 B2

100
/"

U.S. Patent

FIG. 2

Jan. 26, 2016 Sheet 2 of 8

Instantiate Application Component

205

Receive Processing Request

v

Create Request Record (Set Fields)
(Optionally Using Traceability Data Block)

v

Register Begin Request Record
with Start Time

v

Start Request Processing

v

Create Callout Record (Set Fields)

v

Register Begin Callout Record
with Start Time

v

Setup Traceability Data

Y

Call Child Application Component

v

Receive Results from Called
Application Component

Register Callout Stop Time and Duration

v

Perform Additional Request Processing

Y

Register Request Stop Time and Duration

v

Return Results of Request Processing

Analyze Execution Chain

US 9,244,749 B2

\ 200

US 9,244,749 B2

Sheet 3 of 8

Jan. 26, 2016

U.S. Patent

00€ € 9old
N

GET Joales uojjes|ddy /A

0tE
€ usuodwo) uojeolddy

s

£g

[4:]

ole
| Jueuodwon
uopeayiddy

14 20
Z Jusuodwion uajes)ddy 12

11:]

LY

€ A,/wa/
s|aas| ydaq

Sie \L

_\\\\\\\v

Jesmaug

US 9,244,749 B2

Sheet 4 of 8

Jan. 26, 2016

U.S. Patent

oo
N

Y
ST (D jueuodwod
uojieoy|dde) eseqejeq

St

>

¥ 'Old

(O (gueuodwos)
uoyeoydde) solaleg
juewseBeuep Juncsoy

0S¥,

y

(11474

>

Jswojsno

OcY,

Jswoysnalo4gailianb _l.l V

P

esu0dse)y 80jAIeSGeA - JBLUCISND

-

{18enbey eoiuBsqEp)- JewWoIsNDjeB

]

TP (v ueuodwon
uoyjeoydde) [epod junosoy
!
09t
...... by
psBMIO
mm.vv
Pajepi[eAS! o _uﬂ.u.__ﬂuu_
2744
V owvv
Jswojsnopeo| Lt
_ ejnoexy
| ooy | | sares |

s

50¢

lesmoig

U.S. Patent

Jan. 26, 2016 Sheet 5 of 8

Instantiate Application Component

v

Call Additional Application Component

v

Pass Traceability Data

v

Report Traceability Data

v

Analyze Traceability Data

v

Display Results

FIG. 5

505

510

515

520

525

530

US 9,244,749 B2

‘\500

US 9,244,749 B2

Sheet 6 of 8

Jan. 26, 2016

U.S. Patent

9 'Ol

V\\ 009

wpz9~1029 %m@/
upz9 / foz9 1029 éwm)ﬂo% 4029 20z9 POZI~029—~_ 9029~2029
ommm.%%mwmﬂ @wm.mw_mwmﬂ L _mmwoozw uogounggp| JaquinniaxdlLAgisBl D g SdNXY¥ | 6 [7;9
@Mm..%%mwmﬂ owm..%%mwmﬂ £ [ssooong| uonounygp| JequinnieollAgpuy| O G | sdNxH | 8 KE@
9%/ 08:9Z:¥L|€29°08:9Z:11 — [euoneN k
51-60-0L0Z | GL-60-010z | B4 [FSP0°NS| NBO8QN OO 6 sanjepnioereindod| © § | SANXH [2 759
062°089Z:¥L |21 089211 1911 \
5L-60-0L02 | GL-60-010z | €9 [FSO00MS| VOWUNIEML nsenioqemieo| O | | SdNXY 9 wro
29/°08:9zZ:¥L|9LZ 0E:9Z 1L H13Y LNOYL
ss9200n ewiou
et b | si-s0-010z | s1-60-010z | 7% s ! ‘HEOYd ZIHgoud O] v [SINXH S Gs19
02107 LEN 48quinN 38311 U] UONTo8XT 0.1L0¥LEN HequinN Je)d11 O] SS8Usng & 19
b 892 LE9T YL P29°0E9ZHL| oo kssnong oIl sensamol o e snL | v \
§1-60-0L0Z | §1-60-0102 O\ ATVERENEY ec9
[1 :unoyayol] | sbo | s|ieyaq TOJUT UCHNOSXT TojuT ssaursng \
wr@
L2189z kL 2287089211
052 | €sv | 262 prEL [55029Ng| 193011 9AB1184 SWL| o 4 SWL |¢
$1-60-0L0Z | §1-60-0102 Q019
¥ Nmmm m%.mwuﬂ ﬂw.@mm..mwoﬂ 8pel [sse0oNng ZLHEOYd| H13d'LNoYL:godd| 2 L | 1eydodo |2z ko Lo
8€T°1€:9Z:¥L|628°62:92:11 xely :s|le1eq 189 k
1S$990N BlO,
b 6 |s1-60-010z | 51-60-0102 [E9F s Ltedoy alegaid :ong| 0 | 1evodD | 1 509
MW [dwil| vo | Vo (taw) (aw) |(sw) 1eqe7 adA} wAhuosoy \
9 3on|umo | uy | yog | owmy dogs | ewny yumss |ang [S™HS uopoun SUWEN LS| o0y thdea yddy | N

U.S. Patent Jan. 26, 2016 Sheet 7 of 8 US 9,244,749 B2

705
Processor(s) Working
/ Memory
710
/ Storage Device(s) OSp;SrE:Ir:Q
725
)
745
/ Input Device(s) /
715 icati
Application(s)

/ Output Device(s)

720

Communications
f Subsystem

730

700 FIG. 7

U.S. Patent

User Computer

Jan. 26, 2016

Sheet 8 of 8 US 9,244,749 B2

User Computer User Computer

O
8056¢
- 805b - K cl
1 1 1
- — |O= K- — | 0% r ;
= = / \
805a | [1]
Server
O
OH
O
ogaog oo mmfm
= e
L
8152 | 8884 B88 goog 88| | 6756
0oo0 0opo
goog oog
000 ooo

Database

820a

810

Database

820b

FIG. 8

US 9,244,749 B2

1
END-TO-END APPLICATION TRACKING
FRAMEWORK

CROSS-REFERENCES TO RELATED
APPLICATIONS

This application is a continuation application of U.S.
patent application Ser. No. 13/073,504 (the 504 Applica-
tion”), filed Mar. 28, 2011 by Malkiman et al. and titled,
“End-to-End Application Tracking Framework”, which is a
nonprovisional application which claims the benefit, under 35
U.S.C. §119(e), of provisional U.S. patent application Ser.
No. 61/428,709 (the “’709 Application™), filed Dec. 30,2010
by Malkiman et al., and entitled “End-to-End Application
Tracking Framework™, both of which are hereby incorporated
by reference in their entirety for all purposes.

COPYRIGHT STATEMENT

A portion of the disclosure of this patent document con-
tains material that is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclosure
as it appears in the Patent and Trademark Office patent file or
records, but otherwise reserves all copyright rights whatso-
ever.

BACKGROUND

Over the past several years, computer server functionality
has become increasingly modular. The rise of transaction
processing, web services, eXtensible Markup Language
(“XML”) interfaces, and similar technologies has resulted in
a situation in which a lengthy execution chain involving one
or more application servers, middleware servers, database
servers, and/or the like, merely to service a single user request
(e.g., an hypertext transfer protocol (“HTTP”’) GET request
from a web browser).

This modularity provides several benefits. For one thing,
such modularity allows an application developer to focus on
providing a best-of-breed application to handle a single task,
confident in the ability of that application to send and receive
messages (or other data) with other applications in a standard-
ized format, such as the Simple Object Access Protocol
(“SOAP”), the XML Information Bus, the Java Messaging
Service (“JMS”), and HTTP messages, to name a few
examples. Accordingly, an application developer need not
concern itself with building a “soup-to-nuts” solution to solve
a particular computing need. Further, this modularity pro-
vides far more extensible and maintainable solutions than
older, monolithic applications.

This modularity, however, has greatly complicated the task
of software instrumentation and performance monitoring.
For example, in an execution chain involving several different
application components, it can be difficult to monitor the
performance (and/or even confirm the execution) of a particu-
lar application component to determine, for example, which
component is introducing performance bottlenecks and/or
preventing the execution chain from completing successfully.

Separate application monitoring frameworks tend to
require recoding of the entire application chain to accommo-
date the monitoring framework, making such solutions both
expensive and difficult to integrate with existing solutions.
Moreover, such frameworks tend to impose their own perfor-
mance penalties on the monitored applications, because of the
processing overhead required to perform the monitoring.

10

15

20

25

30

35

40

45

50

55

60

65

2

Thus, there is a need for a lightweight application execu-
tion- and performance-monitoring framework. It would be
beneficial if such a framework could be implemented in exist-
ing environments without requiring extensive application
recoding. It would also be beneficial if such a framework
could operate without undue impact to the performance of the
monitored applications and/or could provide end-to-end
monitoring of execution chains.

BRIEF SUMMARY

Certain embodiments provide a framework for monitoring
the execution and/or performance of applications in an execu-
tion chain. In an aspect of some embodiments, the framework
accomplishes this monitoring with a few simple calls to an
application programming interface on an application server,
which minimizes overhead in the monitored applications and
the amount of coding required to implement the framework.
In an aspect of other embodiments, the framework provides
for the passing of traceability data in protocol-specific head-
ers of existing inter-application (and/or intra-application)
communication protocols, allowing the framework to be
implemented without affecting application components that
cannot accommodate the framework.

In some embodiments, for example, when a calling appli-
cation component generates a callout to request processing
from a called application component, the calling application
component first invokes an application programming inter-
face to generate a framework-specific callout log record with
details about the actual callout (including, in some cases, a
begin time of the callout). When the calling application
receives a response from the called application component, it
might invoke the application programming interface to store
the stop time of the request (e.g., when a response to the
request is received), and/or other pertinent data. Similarly,
upon receiving the request, the called application component
might invoke the application programming interface to gen-
erate a framework-specific request log record (which might
include a start time of the request, from the perspective of the
called application component), and might invoke the appli-
cation programming interface to register a stop time (and/or
other pertinent data) upon finishing the requested processing.
This process can be repeated iteratively for multiple steps in
an application execution chain.

In some cases, the application programming interface
might generate an object (comprising, inter alia, a start time
property) to represent a request record or a callout record, and
the application programming interface might populate this
object with execution-specific property values (including
without limitation, a stop time value) upon completion of the
execution step. Alternatively and/or additionally, the applica-
tion programming interface might store the information in a
database record, which might be stored in a database remote
from the application server on which the application compo-
nent executes.

In another aspect, the calling application component and
the called application component might exchange traceability
data using the protocol headers for whatever inter-component
messaging protocol happens to be implemented. Merely by
way of example, traceability data might be passed as part of a
JMS header, an Information Bus header, a SOAP header, an
HTTP header, and/or the like. The application programming
interface, in some cases, can also be used to store this trace-
ability data in the appropriate record object(s) and/or the
database records.

The tools provided by various embodiments include, with-
out limitation, methods, systems, and/or software products.

US 9,244,749 B2

3

Merely by way of example, a method might comprise one or
more procedures, any or all of which are executed by a com-
puter system. Correspondingly, an embodiment might pro-
vide a computer system configured with instructions to per-
form one or more procedures in accordance with methods
provided by various other embodiments. Similarly, a com-
puter program might comprise a set of instructions that are
executable by a computer system (and/or a processor therein)
to perform such operations. In many cases, such software
programs are encoded on physical, tangible and/or non-tran-
sitory computer readable media (such as, to name but a few
examples, optical media, magnetic media, and/or the like).

Merely by way of example, one set of embodiments pro-
vides methods. An exemplary method for establishing a
framework for end-to-end traceability and/or performance
monitoring of an execution chain might comprise receiving,
at a first application component, a request for processing
and/or measuring a first start time of the first application
component. The method, in some embodiments, might fur-
ther include storing in a database, a first request record com-
prising the first start time, the first request record indicating
start of execution of the first application component.

In an aspect, the method might comprise measuring a sec-
ond start time of an application callout and/or storing, in the
database, a callout record comprising the second start time,
the callout record indicating that the first application compo-
nent has initiated an application callout to a second applica-
tion component. In certain embodiments, the method further
comprises establishing a parent-child relationship between
the first request record and the callout record. In other
embodiments, the method might comprise sending applica-
tion data from the first application component to the second
application component, and/or storing, e.g., in the callout
record, traceability data about the application data sent from
the first application component to the second application
component.

The method, in some cases, further comprises measuring a
third a start time of execution of the second application com-
ponent, storing, in the database, a second request record com-
prising the third start time, and/or establishing a parent-child
relationship between the callout record and the second
request record.

In a set of embodiments, the method further comprises
measuring a first stop time of the second application compo-
nent, perhaps after execution and/or before the second appli-
cation passes a response to the first application component,
and storing the first stop time in the second request record.
Likewise, the method might comprise measuring a second
stop time of the application callout after the first application
component receives a response from the called application,
and/or storing the second stop time in the callout record.
Similarly, the method might comprise measuring a third stop
time of the first application component, after the first appli-
cation component returns a response to the request for pro-
cessing, and/or storing the third stop time in the first request
record.

Another exemplary method can be used to measure appli-
cation load and/or performance, and/or to establish data flow
end-to-end traceability. The method might comprise generat-
ing traceability data for a first application component before
the first application component passes application data to a
second application component. The method, then, might fur-
ther comprise passing the traceability data to the second
application component with an auxiliary facility, and/or
retrieving the traceability data at the second application com-
ponent. In an aspect of some embodiments, the method fur-
ther comprises generating, with the second application com-

10

15

20

25

30

40

45

50

55

60

65

4

ponent, a database record to indicate that first application
passed the message/data to the second application, and/or
storing the traceability data in the database record.

As yet another example, a method for implementing an
end-to-end application tracking framework might comprise
instantiating, e.g., by an application server, a first application
component, and/or storing, in a data store, a first start time of
the first application component. In some cases, the method
comprises instantiating a second application component, and/
or storing, in the data store, a second start time for the second
application component.

Upon receiving an indication that the second application
component has complete execution, the application server
might store a first end time of the second application compo-
nent. The method, then, might include determining a total
execution time of the second application component, e.g.,
based, at least in part, on the difference between the second
start time and the first end time of the second application
component. Similarly, the method might further comprise
receiving an indication that the first application component
has completed execution, storing, in the data store, a second
end time of the first application component, and/or determin-
ing a total execution time of the first application component
based, in part, on the difference between the first start time
and the second end time of'the first application component. In
some cases, the method might also comprise displaying the
total execution times for the first and second application
components.

Another exemplary method might comprise receiving, at a
first application component, a first request for processing,
and/or creating a first request record (e.g., as a record object,
as adatabase record, etc.) for the first request. The first request
record, in an aspect, might include an associated first record
identifier. In some cases, the method further comprises gen-
erating, in response to the initial request, a callout to a second
application component, and a callout record can be created
(e.g., in the database) for the callout. In some cases, the first
record identifier is assigned as a parent identifier of the callout
record, and/or a second record identifier might be assigned
(e.g., stored in the callout record) to identity the callout
record.

The method might further comprise receiving the callout at
the second application component as a second request for
processing, and/or creating a second request record for the
second request. A third record identifier might be assigned to
the request record, and/or the second record identifier might
be assigned as a parent identifier of the second request record.

As noted above, other embodiments provide apparatus
and/or computer systems. An exemplary apparatus might
comprise one or more non-transitory computer readable stor-
age media having encoded thereon one or more sets of
instructions executable by one or more computers (e.g., a first
set of instructions executable by a first computer and a second
set of instructions executable by a second computer) to per-
form one or more operations. The one or more sets of instruc-
tions, for example, might collectively comprise instructions
for performing one or more operations in accordance with the
methods provided by various embodiments, including with-
out limitation the methods described above. Merely by way of
example, one of the computers might perform some of the
operations, while another computer might perform others, so
that the computers collectively perform the method (or a
portion thereof). Alternatively and/or additionally, a single
computer might perform the entire method (or a portion
thereof). Somewhat similarly, a computer system might com-
prise one or more processors (which might reside within the
same computer or different computers) and one or more com-

US 9,244,749 B2

5

puter readable media in communication with the one or more
processors. Collectively, the one or more computer readable
media might have, encoded thereon, similar instructions,
which might be executable by the one or more computers to
perform a method (or a portion thereof), such as one of the
methods described above.

BRIEF DESCRIPTION OF THE DRAWINGS

A further understanding of the nature and advantages of
particular embodiments may be realized by reference to the
remaining portions of the specification and the drawings, in
which like reference numerals are used to refer to similar
components. In some instances, a sub-label is associated with
a reference numeral to denote one of multiple similar com-
ponents. When reference is made to a reference numeral
without specification to an existing sub-label, it is intended to
refer to all such multiple similar components.

FIGS. 1 and 2 are process flow diagrams illustrating meth-
ods for tracking application performance, in accordance with
various embodiments.

FIGS. 3 and 4 are block diagrams depicting application
server systems and illustrating application execution chains,
in accordance with various embodiments.

FIG. 5 is a process flow diagram illustrating a method of
passing and using traceability data between applications, in
accordance with various embodiments.

FIG. 6 is a generalized schematic diagram illustrating a
report that can be produced in accordance with various
embodiments.

FIG. 7 is a generalized schematic diagram illustrating a
computer system, in accordance with various embodiments.

FIG. 8 is a block diagram illustrating a networked system
of computers, which can be used in accordance with various
embodiments.

DETAILED DESCRIPTION OF CERTAIN
EMBODIMENTS

While various aspects and features of certain embodiments
have been summarized above, the following detailed descrip-
tion illustrates a few exemplary embodiments in further detail
to enable one of skill in the art to practice such embodiments.
The described examples are provided for illustrative purposes
and are not intended to limit the scope of the invention.

In the following description, for the purposes of explana-
tion, numerous specific details are set forth in orderto provide
a thorough understanding of the described embodiments. It
will be apparent to one skilled in the art, however, that other
embodiments of the present invention may be practiced with-
out some of these specific details. In other instances, certain
structures and devices are shown in block diagram form.
Several embodiments are described herein, and while various
features are ascribed to different embodiments, it should be
appreciated that the features described with respect to one
embodiment may be incorporated with other embodiments as
well. By the same token, however, no single feature or fea-
tures of any described embodiment should be considered
essential to every embodiment of the invention, as other
embodiments of the invention may omit such features.

Unless otherwise indicated, all numbers used herein to
express quantities, dimensions, and so forth used should be
understood as being modified in all instances by the term
“about.” In this application, the use of the singular includes
the plural unless specifically stated otherwise, and use of the
terms “and” and “or” means “and/or” unless otherwise indi-
cated. Moreover, the use of the term “including,” as well as

25

30

35

40

45

55

60

6

other forms, such as “includes” and “included,” should be
considered non-exclusive. Also, terms such as “element” or
“component” encompass both elements and components
comprising one unit and elements and components that com-
prise more than one unit, unless specifically stated otherwise.

Application Tracking Framework

One set of embodiments provides an application tracking
framework, which can supply complete, near-real-time com-
plete traces of operation and performance status of applica-
tions and application components in production and other
environments. The framework allows hierarchical end-to-end
tracking of application component (and application compo-
nent layer) interactions and performance, and tracking of end
user activities for web based and non-web based applications
for both synchronous and asynchronous interactions.

In one embodiment, the tracking framework is imple-
mented as one or more centralized tracking databases, which
may be operated by one or more centralized tracking servers,
and a set of APIs that are accessible by application compo-
nents to generate data according to the tracking framework. In
a particular embodiment, for example, these APIs may be
used by Java and .NET based applications on each computer
where a monitored application component executes.

The terms “application,” “application component,” and
“application component layer” are used interchangeably
herein to refer to any discrete software entity that can be
employed to perform a desired function. (An “application
layer” refers to a specific case of an application component, in
which distinct scopes of a single application component
exchange data with each other via API calls, much like dif-
ferent application components exchange data using the same
API calls, as described in further detail below.) For example,
in many cases, a first application component will call a second
application component to perform a specific processing func-
tion, and the second application component will return a
result of that processing to the first application component. In
this example, the first and second application components
might be components of a single larger application, or they
might be separate applications entirely (or components there-
fore) perhaps executing on different computer systems sepa-
rated by any distance and communicating, e.g., over the Inter-
net or an intranet. This calling procedure may be performed
iteratively, either in series and/or in parallel, as a first appli-
cation component calls a second application component,
which calls a third application component, and so forth. In
some cases, one application component might call two other
components, again either serially or in parallel. The entire
process, including each successive call and return, is referred
to herein as an “execution chain,” which normally begins with
the invocation of a top level component and a return, by that
top level component, of a result to the calling entity, which
might be a user, a web browser, another application outside
the execution chain, etc. The phrase “outside the execution
chain” is used herein to refer to an entity that is not subject to
the application tracking techniques described herein.

In many cases a first application component will call a
second application component by sending a message in a
specified format to the second application component. Any of
a variety of message formats are possible, including without
limitation Hypertext Transfer Protocol (“HTTP”’) messages,
Simple Object Access Protocol (“SOAP”) messages or other
web-services based messages, eXtensible Markup Language
(“XML”) messages (including without limitation Informa-
tion Bus XML messages), are but a few examples of such
messages in which the execution tracking techniques of vari-
ous embodiments may be employed. In other cases, one appli-
cation component (or application component layer) may call

US 9,244,749 B2

7

another application component (or application component
layer, perhaps within the same application component)
through the use of an application programming interface
(“API”), and the execution tracking techniques of various
embodiments may be used to trace such execution chains as
well, although the use of a dedicated API may obviate the
need for some of the features provided by various embodi-
ments.

In some embodiments, applications are tracked by tracing
“requests” and “callouts,” and/or by creating database records
to track these entities. As used herein, the term “request”
refers to a message or data accepted by an application com-
ponent, the message or data requesting the receiving applica-
tion component to perform a processing function (the result
of which might be returned as a response to the request). An
outgoing message or data passed by a calling application
component to a called application component is referred to
herein as a “callout” Thus, there is generally a reciprocal
relationship between a callout and a request—a single mes-
sage between a calling application and a called application is
considered a callout from the perspective of the calling appli-
cation and is considered a request from the perspective of the
called application. An exception to this relationship is the
request received by the first application component in the
execution chain, which generally will not have a correspond-
ing callout from a calling application component (since what-
ever entity called the first application will generally be out-
side the execution chain and/or may not be instrumented with
the framework described herein). Application components
may have from zero to many callouts for a given request;
conversely, application components may have from one to
many requests for a given callout, although there usually may
be only one request for a given callout.

Certain embodiments create and/or modify records to track
the execution of application components in the execution
chain. These records can serve multiple purposes. For
example, in some cases, the records can memorialize the
execution chain (i.e., can demonstrate that a first application
called a second application) if the execution chain is not
completed, which can assist in troubleshooting a complex
execution chain. Moreover, the records, as described in more
detail below, can be used to monitor performance of the
execution chain as a whole and/or of components involved in
the execution chain.

There are two basic types of records employed by certain
embodiments: a begin record and an end record. A begin
“request” record is generated by an application component
immediately upon receiving a request (in particular embodi-
ments, before any other processing is performed responsive to
that request), or immediately before calling another compo-
nent. An end “request” record is generated by the application
component after completing execution to respond to the
request message/data (usually before transmitting any
response to the calling entity). Likewise, a begin “callout”
record may be generated immediately before submitting a
callout to a called application component, and an end “call-
out” record may be generated immediately after receiving the
response to that callout. In an embodiment, an application
component generates a record (which might be either a begin
record or an end record for a request or a callout) using an API
call to the tracking server.

In an embodiment, an application generates a record by
making an API call to the tracking framework, which creates
a record object. The API then may transmit the object (per-
haps as a delimited string, such as a comma-delimited string)
to a tracking server, which may store the record as a database
record, perhaps in the conventional fashion. In one aspect, an

10

15

20

25

30

35

40

45

50

55

60

65

8

application calls the API to generate a begin record immedi-
ately after receiving a request (or immediately before sending
a callout) and calls the API. Although a variety of record
formats (and formatting conventions) are possible within the
scope of different embodiments, the table below illustrates a
record format for each type of record, in accordance with one
set of embodiments:

TABLE 1
Example Layout for Begin Record
Null-
Field Value able/ Max
N Name Type Value Empty Length
1 Label String B - Setup by framework. N 1
2 Hostname String Determined by N 64
framework.
3 Application String Passed as a parameter N 48
Server Name to framework.
4 Record Id GUID - Generated by framework. N 36
String
5 Parent Id GUID - Set up by framework. Y 36
String Value is empty for
initial requests.
6 Correlation GUID - Set up by framework. N 36
Id String
7 Record String Set up by framework. N 1
Type R - requests; C - callout;
S - service.
8 Application String Implementation-specific N 40
Id identifier.
9 Service String Passed by application N 64
Name component as a
parameter to AP
10 Function String Passed by application N 64
Label component as a
parameter to AP
Identifies processing
function within
component.
11 UI String Passed by web apps as Y 128
Session Id a parameter to API or
set up by framework.
12 Sample Integer Passed by application N 1-6
Frequency component as a
parameter to AP
13 Start Time String Set up by framework N 23
APL
14 Stop Time String Set up by framework Y 23
API Empty string at
creation of begin record.
15 Duration Integer Set up by framework Y 1-5
API Empty string at
creation of begin record.
16 Completion String Set up by framework Y 1
Status API Empty string at
creation of begin record.
17 Start Info String Can be set up by Y 255
framework APL
18 Supple- String Can be set up by Y 255
mental framework APL
Info

As noted above, the layout for the begin record (and the
fields therein) can vary in different embodiments, but for
exemplary purposes, this layout is used in several embodi-
ments. In this example, the Label field identifies the record as
a Begin record. The Hostname field identifies the host on
which the application component executes, and can be deter-
mined by the framework (e.g., through conventional operat-
ing system calls). The Application Server Name field can be
implementation specific, and it can identify a particular spe-
cific named server process on a given host (e.g., one of several
web application servers, such as WebSphere™, Apache™,
and/or the like, some or all of which might be running on a
given host).

US 9,244,749 B2

9

The Record ID field is generated by the framework, and it
is a (e.g., globally) unique identifier of the record. This field,
as described elsewhere herein, is used in many embodiments
to track an execution chain from request to callout to request,
and so forth. For example, the Parent ID field (which also can
be a globally unique identifier), which is also assigned by the
framework, is blank for the first request in an execution chain,
but that field will be populated with the Record ID value for
the preceding step(s) in the execution chain. The Correlation
1D field is similar (and can also be globally unique), but it is
populated with the same value for each record in an execution
chain (which might be, in some cases, the Record ID of the
first record in the execution chain). The Ul Session ID is used
in web-based applications, and in some embodiments, that
field corresponds to the UlSessionID established between a
user’s web browser and the web server (or web application)
that initiated the execution chain. The Ul Session ID field thus
can allow all of the records in two or more different execution
chains to be correlated with a particular end user’s browser
session. For non-browser-based applications, this field might
be left null or omitted altogether.

The Record Type field identifies the type of framework-
specific transaction to which the record corresponds—e.g., a
request, a callout, etc. The Application ID is implementation-
specific, and may be omitted from some embodiments, but if
an enterprise uses an applications catalog to register applica-
tions components, the Application ID can be used to store the
applications catalog’s identifier for the application compo-
nent to which the record relates. This field might be set by the
framework, based on a lookup in the applications catalog, or
might be passed by the component itself to the API. Other
options are possible as well.

Similarly, the Service Name field can be used, based on the
implementation, to provide a human-friendly logical name
for the application component, and the Function Label can be
used to provide a human-friendly logical name for the func-
tion within the component that is responsible for processing
the request, or that issued the callout, depending on the nature
of the record.

The Sample Frequency is an optional field that is used, in
some embodiments, to notify the framework of the sample
frequency that should be used to monitor that application
component’s performance. The Sample Frequency might
depend on the volume of transactions processed by that appli-
cation component. For example, for relatively low transaction
volume processes, the sample frequency might be 1, meaning
that every transaction should be tracked. For high-volume
processes, such frequent sampling might create performance
problems, so a lower sample frequency, such as sampling one
of every 10,000 transactions, might be more efficient. The
application component can pass the desired sample frequency
to the API as a parameter.

The exemplary record depicted in Table 1 also includes a
Start Time field, which can be a Universal Time Coordinated
(“UTC”) datetime value, among other alternatives. In some
embodiments, the framework obtains the current time at the
host where the application component executes (e.g., from
the host’s system clock, etc.) and populates this field with that
value, although other alternatives are possible as well. In an
aspect, the Start Time field can represent the current time (to
an appropriate or available degree of precision) immediately
after the request is received or immediately before the callout
is made, depending on the nature of the record. The record
may also include a Stop Time field and a Duration field.
Generally, in a begin record, each of these fields is null.

10

15

20

25

30

35

40

45

50

55

60

65

10

Similarly, the Completion Status field, which can be used to
indicate any execution problems, is left empty in a begin
record.

An optional Start Info field can be populated by a frame-
work-specific API to store values of function business param-
eters, which can allow correlation between actual business
data and framework-specific load and/or performance data
characterizing the processing of that business data. There
may also be a Supplemental Info field to hold execution
information about the process to which the request or callout
relates; this field is generally null in a begin record.

In certain embodiments, an end record has the same (or
similar) layout as a begin record. The difference between the
two is that an end record generally will also include informa-
tion that is available only after execution (either of request
processing or of a called process) is complete. In some
embodiments, in fact, the object that represents the begin
record, as created by the framework API, persists until pro-
cessing of the request/callout is complete, at which point the
object is updated by another API call to populate the object
with values which become available after processing, such as
stop time, duration, status, and supplemental information;
this updated object can then be transmitted to the tracking
server for storage as an end record.

TABLE 2

Example Layout for End Record

Null-
Value able/ Max
N Field Name Type Value Empty Length
1 Label String E N 1
2 Hostname String Determined by N 64
framework.
3 Application String Passed as a parameter N 48
Server Name to framework.
4 Record Id GUID - Generated by framework. N 36
String
5 Parent Id GUID - Set up by framework. Y 36
String Value is empty for
initial requests.
6 Correlation GUID - Set up by framework. N 36
Id String
7 Record String Set up by framework. N 1
Type R - requests; C - callout;
S - service.
8 Application String Implementation-specific N 40
Id identifier.
9 Service String Passed by application N 64
Name component as a
parameter to AP
10 Function String Passed by application N 64
Label component as a
parameter to AP
Identifies processing
function within
component.
11 UI String GUID. Passed by web Y 128
Session Id apps as a parameter
to APL
12 Sample Integer Passed by application N 1-6
Frequency component as a
parameter to AP
13 Start Time String Determined by N 23
framework.
14 Stop Time String Determined by Y 23
framework.
15 Duration Integer Determined by Y 1-5
framework.
16 Completion String Passed by application Y 1
Status component as
parameter to AP
17 Start Info String As was set by APL Y 255

US 9,244,749 B2

11
TABLE 2-continued

Example Layout for End Record

Null-
Value able/ Max
N Field Name Type Value Empty Length
18 Supple- String Passed by application Y 255
mental component as
Info parameter to APL.

As can be seen by a comparison of Tables 1 and 2, in the
exemplary embodiment, the record format for begin and end
records is essentially the same (although this is not required),
and in some cases, generating an end record, as mentioned
above, may merely comprise calling the framework API to
update the record object with information available after pro-
cessing has completed, although there may be two discrete
records transmitted to the tracking server and/or stored in the
tracking database for each record object—a begin record and
an end record.

Thus, for example, the exemplary end record has a different
value (“E”) for the Label field, indicating that the record is an
end record, rather than a start record. The End Record also has
values for the Stop Time field and the Duration field (which
might simply be an arithmetic subtraction of the start time
from the stop time). The end record may also have a value for
the Completion Status field (which may be a parameter
passed by the application component to the API for error
handling purposes) and/or the Supplemental Info field (which
may be a parameter passed by the application component to
the API to provide any transaction-specific information,
which can be shared among application components and/or
stored in the tracking database).

How the respective begin and end records are stored in the
database is implementation-specific. In some cases, the begin
record might be deleted when the end record is received. In
other cases, the appropriate fields of the begin record might be
updated with values from the end record, while in still other
cases, the begin record and the end record might be stored as
different records. (In an aspect of some embodiments, if a
begin record exists without a corresponding end record, or if
a begin record has not been updated with data from an end
record, that inconsistency can be used to identify processes
that did not successfully complete execution.)

As can be seen from the examples above, an execution
chain can be considered hierarchical in nature, with an appli-
cation component hierarchy existing from requests to callouts
and from callouts to requests. For example, upon receiving an
initial request (from outside the execution chain) an applica-
tion component will call the tracking server (e.g., as a call to
atracking framework API on the machine on which the appli-
cation component executes) to generate a begin record for the
request (referred to herein as a “Request Record”).

If the first application component needs to call a second
application component, the first application component will
call the tracking server again to store a begin record for the
callout (referred to herein as a “Callout Record”). When
calling the tracking server to store a Callout Record, the
application component will often pass, as a parameter of the
call, the Record ID of the Request Record. (Alternatively, if
the respective calls to the tracking server to store the Request
Record and the Callout Record are made as part of the same
execution thread at the machine on which the application
component runs, the Record ID ofthe Request Record may be
maintained in the machine’s thread store, which can be
accessed by the API, and therefore need not be passed as part

10

15

20

25

30

35

40

45

50

55

60

65

12

of'the call by the application component.) The AP, then, will
generate the Callout Record with a start time of the callout
(which, again, might be a UTC value but might be obtained
locally at application component). The API will also assign,
as both the Correlation ID and the Parent ID in the Callout
Record, the Record ID of the Request Record. In this way, the
Callout Record is linked to the Request Record, and it can be
considered a child of the Request Record. The record type of
the Callout Record will be “C”.

Upon receiving the call from the first application compo-
nent, the second application component, from whose per-
spective the call is a request, will call a messaging platform-
specific APl to generate a second Request Record. The
Record ID of the Callout Record may be passed as part of the
call, and that Record ID of the Callout Record will be
assigned as the Parent ID of this new Request Record. The
Correlation ID and/or Ul Session ID will be the same.
Accordingly, this new Request Record will be identified as a
child of the Callout Record and as part of the same execution
chain as both the first Request Record and the Callout record.
This new Request Record will be assigned a start time corre-
sponding to the time the request was received at the second
application component. This process can be repeated con-
secutively for each callout in the execution chain, e.g., if the
second application component needs to call a third applica-
tion component, it will call the API to generate a new callout
record, the third application component will call the API to
generate a new request record, and so forth.

When an application component finishes processing the
request, it will call the API to generate an end record for that
request. As noted above, in some embodiments, the end
record will essentially be identical to the corresponding begin
record for the request, except that it will include a stop time.
The end record may also include some execution related-data
(such as exception handling data, etc.). Similarly, when a
calling application component receives a result from a called
application component, the calling application component
will call the API to generate an end record for the callout,
generally immediately after receiving the response from the
called application.

In operation, the Parent ID value allows for end-to-end
traceability of data/messages flow from component to com-
ponent. The UI Session ID value allows for tracing of end user
activities in web based applications. Its value will be the same
across framework records associated with different hierarchi-
cal chains for different initial requests within the same user
session. Similarly, the Correlation ID value allows for tracing
of'end user activities in non-web based applications. Its value
will be the same across framework records associated with
different hierarchical chains for different initial requests
within the same instance of application execution.

Generated request and callout records thus can be collected
and processed to compute the request and callout durations
and establish a trace of execution from request to callout in the
calling application and from the callout in the calling appli-
cation to the request in called application. Since the called
application often plays dual roles and calls another applica-
tion use of this framework allows us to establish end-to-end
trace of execution in diverse and complex interaction pat-
terns.

The framework allows for reliable load metrics collection.
Each begin request and callout record accounts for one data/
message to be processed by application/application compo-
nent. In case when framework is not fully implemented and
end records are not logged, collection of begin records still
allows for load measurement. Further, the framework can
provide a light weight approach for performance metrics

US 9,244,749 B2

13

collection. Duration of requests and callouts can be computed
outside of application/application components by processing
start and stop records with the same Record ID.

For example, comparison of a request start time and a
corresponding (child) callout start time can be used to mea-
sure load of an application receiving the request and issuing
the callout, while comparison of a callout start time and a
corresponding (child) request start time can be used to mea-
sure communication responsiveness (and/or network latency,
etc.) between a calling application and a called application.
Similar metrics can be developed for called application per-
formance (difference between start time and stop time) and/or
the like.

Inter-Application Communication and Reporting

Other embodiments can provide a light-weight, non-intru-
sive approach for passing traceability and auxiliary data from
a calling application/application component to a called appli-
cation/application component to enable metrics data genera-
tion according to framework described above.

In an aspect, certain embodiments utilize existing auxiliary
facilities (including, but not limited to, protocol headers) for
sending status and/or timing information between applica-
tions (e.g., on behalf of the tracing framework described
above). Such an implementation reduces the total impact on
the operation of the applications and application components.
Thus, while the business data and/or messages (collectively
referred to herein as “application data”) may be sent as pay-
load between application components, the auxiliary facilities
associated with the mode of inter-component communication
can be used to pass traceability and auxiliary data.

For example, the header of the SOAP protocol may be used
to store tracking information. Such information may include
a correlation ID, record ID, parent ID, etc. Because such
embodiments use the SOAP (or other existing) protocol, there
is no need to change the schema or payload of applications,
and so there is very little impact on operations of the appli-
cations. The implementation of such a tracking framework
also becomes very transparent because no new or additional
protocols are needed to implement such functionality. Fur-
thermore, because the framework uses existing protocol
headers to transport information, the overall impact on the
operation of the applications is minimal.

Thus, the approach employed by various embodiments
involves passing of traceability data, such as the Parent ID, Ul
Session ID, Correlation ID described above (and/or auxiliary
data) without requiring any change to business application
programming interfaces.

The traceability data and auxiliary data may be passed
from calling application/application component to called
application/application component by means of different pro-
tocols infrastructure and data exchange. The examples
include but are not limited to: HT TP headers for HttpRequest
to called application, SOAP headers for calls to web services,
JMS headers for JMS calls, Bus headers for calls to Informa-
tion Bus responders, HI'TP Request parameters, a data set
placed on a queue, and/or the like.

Example Implementations

FIGS. 1-8 illustrate several exemplary embodiments, and it
should be noted that the features of the embodiments in con-
junction with FIGS. 1-8 can be combined in any suitable
fashion without varying from the scope of yet other embodi-
ments.

FIG. 1 illustrates, in general, a method 100 of tracking
application performance and/or inter-application communi-
cations. At block 105, an application component is instanti-
ated (the application component, as referred to in this
example, might be a standalone application or a component of

20

25

30

40

45

55

14

a larger application). At block 110, the application compo-
nent receives an incoming message or data, which represents
a request for processing by the application component. (This
request might be received from any of a variety of entities
within or outside the execution chain, as described elsewhere
herein). At this point, a start time for the first applications is
registered (block 115) (e.g., by a process described in further
detail below). The application component then begins the
requested processing in order to service the request (block
120). The application component determines whether it can
service the request on its own, or whether it needs to call a
child application (which might be a separate application, a
separate component in the same application, or even a recur-
sive call to the same process), as represented by decision
block 125.

Ifanother application component is to be called, the calling
application component registers the time immediately before
the call (block 130) and then calls the child application com-
ponent (block 135). From the perspective of the child (called)
application component, this reiterates the process, beginning
with receiving the incoming message (block 110). From the
perspective of the parent (calling) application component, the
application component waits for a result of the call, and when
that result is received from the child component (block 140),
the parent application component registers the stop time of
the call and/or the duration of the call (block 145).

The parent application component then performs any nec-
essary additional processing to satisfy the request (block
150), and if any additional calls to the same or other child
applications are necessary, the parent application component
can repeat the procedures described above with respect to
blocks 130-150, as shown by block 155. After the request
processing is complete (block 160), the parent application
component registers the stop time and/or duration of its own
processing (block 165), at which point it might return a result
to the entity from which it received the incoming message,
and control might return to that entity.

FIG. 2 illustrates an application monitoring method 200 in
somewhat more detail. The method 200 comprises instanti-
ating a first application component (block 205). At block 210,
the first application component receives a processing request.
If the application component is the first application compo-
nent in an execution chain, the application component may
receive the request from any entity outside the execution
chain (including, without limitation, a user; a web browser;
another, non-monitored application or component; etc.).
Alternatively, as described further below, the application
component might be a child application component that
receives a processing request from a parent application com-
ponent as part of the execution chain. In either case, the
behavior of the application component can proceed as
described with respect to the remainder of the method 200.

At block 215, a Request Record is created for the request,
and the fields of the Request Record are set. In some cases, as
described above, the creation of a Request Record might
comprise the instantiation of a record object using the track-
ing framework API, although non-object-oriented records
may be used in accordance with other embodiments. Some of
the field values of the record object may be set by the tracking
framework, while others may be passed to the API via the
application component. (Examples of such behavior are
described above with respect to Table 1, although other
options are possible as well.) At block 220, the Request
Record is populated with a start time (as described above, for
example), and a begin Request Record may be registered with
the tracking server. It should be noted that, in some embodi-
ments, the creation of the Request Record and the registration

US 9,244,749 B2

15

of'the begin record for the request are performed as part of the
same API call, and/or both operations are performed nearly
simultaneously, although this is not required.

At block 225, request processing begins in the first appli-
cation component. The request processing essentially
involves any operations that are necessary or proper to per-
form the work requested by the incoming message and/or to
produce the result requested by the incoming message. In
many cases, request processing will begin immediately fol-
lowing the registration of the begin record (with a start time);
it is in the application component developer’s best interest to
begin processing without delay after the start time is regis-
tered, so as to not unduly malign the performance metrics of
the application component. Other circumstances might
necessitate a delay between the registration of the begin
record and the commencement of processing, however, and
this can be supported as well. In most embodiments, however,
the request processing cannot begin until the begin record has
been registered, so as to prevent the application component’s
developer from unfairly manipulating the performance met-
rics in favor of the application component.

If'the first application component needs to call one or more
child application components, the sub-process illustrated by
blocks 230-255 may be performed iteratively, in series or
parallel, as necessary. Although FIG. 2 is described only with
respect to a single child application component, it should be
appreciated that any number of calls to one or more different
child application components might be performed in various
implementations. Conversely, in some cases, an application
component might not call a child application component at all
(e.g., of that application component is the last component in
an execution chain).

At block 230, the first application component creates a
Callout Record object and sets the fields in that object, e.g., as
described above with respect to the Request Record. At block
235, the first application component registers the begin time
for the callout (e.g., by populating a Start Time field in the
Callout Record and registering a begin Callout Record with
the tracking server). As noted above, the Parent ID of the
Callout Record often will be populated with the Record ID of
the first application component’s Request Record, while the
Correlation ID and/or UI Session ID fields often will be
populated with the values from the corresponding fields in the
Request Record (any of which may be passed as a parameter
to the framework API when calling the API to generate the
Callout Record).

At block 240, the first application component sets up any
necessary traceability data, as described further below, and at
block 245, the first application component calls a second
(child) application component. It should be noted that, in
some embodiments, design guidelines require developers to
develop application components in such a way that the reg-
istration of the begin Callout Record is performed immedi-
ately prior to calling the child application, so as to record the
performance of both the calling application component and
the called application component accurately (for example, to
prevent the calling application component from registering a
callout start time in advance of calling the child application
component and thereby attributing some of its own process-
ing time to the child application component’s recorded execu-
tion duration).

As noted above, the first application component may call
the second application component in a variety of ways, any of
which can be considered a message, in accordance with vari-
ous embodiments. Thus, from the perspective of the second
(child) application component, the method 200 reiterates
from block 210 when the child application component

20

40

45

16

receives this message. As noted above, in some embodiments,
some of the values of the fields in the Request Record object
created by a child application component will depend on
corresponding fields in the Callout Record of the parent appli-
cation component, which may be passed, for example, in the
header of the message used to call the child application, as
described elsewhere herein. Merely by way of example, the
Record ID of the Callout Record generated by the parent
application component will be used as the Parent ID of the
child application component’s Request Record, while the
same Correlation ID and/or Ul Session ID may be used in
both records.

From the perspective of the first application component,
the method 200 continues, and when the first application
component receives a result from the second (child) applica-
tion component (block 250), the first application component
registers a callout stop time and duration. This operation
might comprise, for example, calling the framework API to
populate a Stop Time field and/or a Duration field in the
Callout Record object (as well as populating any additional
fields with execution information, which might be passed as
parameters of the API call). This API call might also cause the
framework to send an end Callout Record to the tracking
database.

Atblock 260, the first application component performs any
additional processing necessary (which, as noted above,
might involve calling other child applications, e.g., using the
sub-process illustrated by blocks 230-255). When the first
application component finishes the requested processing, it
registers a request stop time (e.g., by calling a framework API
to populate a Stop Time field, a Duration field, and/or any
other appropriate fields in a Request Record object and/or to
submit an end Request Record, perhaps comprising the
updated fields, to a tracking database). The first application
component then might return a result of the requested pro-
cessing to the calling entity (block 270). This result can com-
prise any appropriate data calculated or generated by the
processing, a return code, and/or any other appropriate mes-
sage or information.

Although FIG. 2 is described above as if the first applica-
tion component is the first step in a monitored execution
chain, it should be appreciated that, if the first application
component is not the first step in the monitored execution
chain (i.e., if the first application component was called by
another monitored application component), the other appli-
cation component might perform the sub-process of blocks
255-270 as well.

At block 275, the method 200 can include analyzing the
entire execution chain, and/or portions thereof. Merely by
way of example, by comparing start and stop times, the dura-
tion of each step in the execution chain can be determined,
and application loads and performance bottlenecks can be
identified. Merely by way of example, in an aspect, the dura-
tion of callout from the standpoint of calling application is the
time interval between blocks 255 and 235; the duration of the
request processing from the standpoint of called application
for this callout is the time interval between blocks 265 and
220 of the called application; then, the time spent on middle-
ware and data transmission over network between calling and
called applications is the difference between first and second
durations. In some cases, the method 200 might further com-
prise providing output of the analysis. One example of pro-
viding such output is displaying and/or printing a report, such
as the report illustrated by FIG. 6, described in further detail
below.

FIG. 3 illustrates schematically an execution chain 300 in
an application server environment. A web browser 305 (or

US 9,244,749 B2

17

other entity) transmits a request to a first application compo-
nent 310. Immediately upon receiving the request, the first
application component 310 generates a Request Record (e.g.,
a begin record) denoted on FIG. 3 as Al attime t;,. The first
application component calls a second application component
325 and a third application component 330. Before calling the
second application component 325, the first application com-
ponent 310 generates a Callout Record (e.g., a begin record)
denoted B1 at time t;, , measures callout stop time and sets up
traceability data (e.g., as described above with respect to
blocks 230-240). Similarly, the first application component
310 generates a Callout Record (e.g., a begin record) denoted
B3 (and/or performs the operations described at blocks 230-
240 above) at time t5;. When the second application compo-
nent receives the request, from the first application compo-
nent 310, it generates its own Request Record (begin record)
C1 (and/or performs operations such as those described above
at blocks 215-220) at time t.,. Similarly, when the third
application component 330 receives the request from the first
application component 310, it generates its own Request
Record (begin record) C3 (and/or performs operations such
as those described above at blocks 215-220) at time t 5.

When the second application component 325 finishes pro-
cessing, it generates an end Request Record C2 (e.g., as
described above with respect to blocks 265-270 above) and
provides its results to the first application component 310,
which generates an end Callout Record B2 (corresponding to
the begin Callout Record B1), e.g., as described above at
blocks 250-255, at time tz,. Likewise, when the third appli-
cation component 330 finishes execution, it generates an end
Request Record C4 (corresponding to the begin Request
Record C3) at time t,, and, upon receiving the response from
the third application component 330, the first application
component 310 generates an end Callout Record B4 (corre-
sponding to the begin Callout Record B3) at time t,. After
performing any additional processing to satisfy the browser’s
305 request, the first application component 310 generates an
end Request Record A2 (corresponding to begin Request
Record Al), e.g., as described at blocks 265-270 above, at
time t,, and provides the requested response to the browser
305.

It should be noted that, in certain embodiments, the end
records described above are generated immediately before
the response to the request is provided to the calling entity,
and, that each end record may be formatted as described
above. For example, the end record generally will have asso-
ciated therewith (and/or stored therein) the corresponding
stop time of the application component’s execution (in the
case of a request record) or corresponding stop time of the
callout, i.e., the time at which the response was received from
the called application component (in the case of a callout
record).

It should also be noted that, while this description refers to
“generation” of begin and end records, this procedure may be
performed in several ways. Merely by way of example, in
some cases, as described above, generating a begin record
might comprise calling a framework API to generate a record
object (e.g., a Request Record object or a Callout Record
object), to populate fields in that object, and/or to transmit a
representation of that object (e.g., a comma-delimited string
comprising the fields of the record object) to a tracking data-
base. Likewise, a new end record may be generated by calling
the framework API to update the relevant record object (i.e.,
the record object created by calling the API to generate a
begin record) to populate Stop Time, Duration, and/or other
execution-specific fields, and/or to send a representation of
the updated record object to a tracking database for storage,

10

15

20

25

30

35

40

45

50

55

60

65

18

also as described above. In general, however, any procedure
that results in the recording of start time, stop time, and/or
other relevant information in a fashion that allows for later
analysis can be considered generating a begin record or an
end record, respectively.

The start and stop times of each step in the execution chain
300 can be used to measure performance (and/or assure
execution) or each monitored step in the execution chain. For
example, using the nomenclature of FIG. 3, the execution
time of the overall process can be measured by t,,—t,,, the
execution time of application component 325 can be mea-
sured by t,—t.,, and the execution time of application com-
ponent 330 can be measured by t.,~t.5. The callouts to the
second and third application components, 325 and 330
respectively, can be performed in serial or parallel fashion, as
required by the specific implementation. As illustrated, all of
the application components 310, 325, 330 reside on a single
application server 335, but they easily could be separate
applications and/or could reside on separate application serv-
ers in different embodiments.

While FIG. 3 illustrates an abstract depiction of a concep-
tual execution chain, FIG. 4 illustrates a more detailed view of
an execution chain 400 involving the browser 305, an account
portal 405, an account management service 410, and a data-
base 415. While FIG. 4 does not include a time axis, one
skilled in the art can appreciate that a time axis similar to the
axis depicted on FIG. 3 could be used to measure the timing
and performance of the execution chain 400 on FIG. 4.

The execution chain 400 begins which the browser pro-
vides a request (e.g., an HTTP request, such as a login request
with the required credentials) to the account portal 405, using
perhaps a form on a page titled “index.jsp.” Upon receiving
the request, the account portal creates a begin Request Record
(comprising a start time, as described above) and executes
(step 420) an Account Action function, which implements a
loadCustomer operation in a Userldentity function (which
might, for example, authenticate the user with the supplied
credentials). This function creates a begin Callout Record
(with another start time), which might be a child of the
Request Record, and makes a callout 430 (in the form of a
web service request called getCustomer, which might include
a userid value of the user’s credentials) to the account man-
agement service 410, which in turn creates its own begin
Request Record (with a start time), which may be a child of
the Callout Record. (Each of these records, as well as those
described below, might comprise content similar to, and/or
follow formatting conventions similar to, those described
above.)

The account management service 410 requires data from
the database 415 to service the request from the account portal
405, so it creates a new begin Callout Record (again, with its
own start time), which might be a child of the Request Record
it created, and makes a call (in the form of a database query
440, which might be, for example a SQL query on the sup-
plied userid) to the database 415. The database 415 (which
may be a database management system, such as a relational
database management system), upon receiving the query, cre-
ates its own begin Request Record (with a start time), which
may be a child of the callout record created by the account
management service 410, performs the requested query, gen-
erates an end Request Record with a stop time, and returns a
response 445 (e.g., a set of one or more of the customer
records comprising the requested information, such as a cus-
tomer record having the supplied userid as a key field). The
account management service 410, upon receiving the
response 445 from the database 415, generates an end Callout
Record with a stop time, performs any additional processing

US 9,244,749 B2

19

needed to service the request 430 from the account portal,
generates a Request Record with a stop time, and provides a
response 450 (e.g., customer data, perhaps including a pass-
word hash, from the record(s) obtained from the database
415) to the web service request from the account portal.

Upon receiving the response 450, the account portal gen-
erates an end Callout Record with a stop time, and the Use-
rldentity function performs any additional processing (e.g.,
authentication of the userid with the supplied password hash),
and returns a response 455 to the AccountAction function
indicating that the user has been authenticated and/or autho-
rized. The AccountAction function then creates a response
450 (e.g., details.jsp) which can be provided to the browser
305 and generates an end Request Record with a stop time.

The execution chain 400 may have additional features as
well. For example, if desired, each function in the account
portal 405 might create request and/or callout records when
calling other functions in the account portal 405 (and/or after
being called, as appropriate). Additionally and/or alterna-
tively, each step in the execution chain might include, with the
callout or response, traceability data which can allow for
more detailed tracing of the execution chain, for example, to
identify performance bottlenecks, etc.

FIG. 5 illustrates a method 500 by which traceability data
can be passed and/or used for analysis. The method 500
comprises instantiating a first application component (block
505). The operation of instantiating an application might take
any of several forms, depending on the nature of the first
application. The web browser request described with respect
to FIG. 4, above, is one example of an action that could
instantiate an application.

At block 510, the first application calls a second applica-
tion using an appropriate protocol (HTTP, SOAP, etc.). In
accordance with the illustrated embodiment, the first appli-
cation passes traceability data to the second application using
any auxiliary facilities (e.g., protocol headers) associated
with the protocol used to make the call (block 515). This can
include, for example, traceability data set up according to the
process described with respect to FIG. 2, such as fields from
a request and/or callout record (e.g., Record ID, Correlation
1D, and/or UI Session ID fields) as well as any other infor-
mation that can be used to trace execution between different
steps in the execution. In a novel feature of some embodi-
ments, available space in the protocol headers can be used to
carry a payload of traceability data without varying from the
published protocol. In this way, these embodiments can pro-
vide enhanced traceability functions while still adhering to
the protocol (i.e., so as not to break compatibility with other
components that are not configured to operate in this
enhanced manner). At block 520, the method 500 comprises
reporting the traceability data. In some respects, this opera-
tion can comprise sending the traceability data to the tracking
database (e.g., as part of a begin record and/or end record for
a request and/or a callout).

Atblock 525, the traceability data is analyzed, and at block
530, a result of the analysis is displayed. In one embodiment,
for example, the report of the analysis might comprise a report
such as the report illustrated by FIG. 6, described below in
further detail.

The traceability data allow certain embodiments not only
to build a hierarchical, end-to-end execution chain but also, in
some cases, to identify the origin of initial request processed
by a given application component. For example, different
systems reusing the same application component will have
different initial Request Records with corresponding Record
IDs. Since the Correlation ID of Request Record is assigned
to the Record ID of the initial Request Record (which, as

10

15

20

25

30

35

40

45

50

55

60

65

20

noted above, can be globally unique), the Correlation ID may
be used to filter framework data to identify data associated
with a particular system that generated them.

It should be noted that, while the method 500 contemplates
two applications (or application components), different
embodiments can employ any reasonable number of applica-
tions/components, and can pass traceability data as far along
the execution chain as desired, using protocol headers in
callout requests and responses, as appropriate. Thus for
example, the method 500 could be employed in conjunction
with the execution chains depicted in FIGS. 3 and 4.

More generally, FIGS. 1, 2, and 5 illustrate various meth-
ods that can be used to monitor and/or track application
performance. While the methods of FIGS. 1, 2, and 5 are
illustrated, for ease of description, as different methods, it
should be appreciated that the various techniques and proce-
dures of these methods can be combined in any suitable
fashion, and that, in some embodiments, the methods
depicted by FIGS. 1, 2, and 5 can be considered interoperable
and/or as portions of a single method. Similarly, while the
techniques and procedures are depicted and/or described in a
certain order for purposes of illustration, it should be appre-
ciated that certain procedures may be reordered and/or omit-
ted within the scope of various embodiments. Moreover,
while the methods illustrated by FIGS. 1, 2, and 5 can be
implemented by (and, in some cases, are described below
with respect to) the systems 700 and 800 of FIGS. 7 and 8
below and/or the execution chains of FIGS. 3 and 4 above (or
components thereof), as well as the systems/execution chains
depicted in the Appendix of the *709 Application (which is
incorporated herein by reference), these methods may also be
implemented using any suitable hardware implementation or
application framework. Similarly, while the systems/execu-
tion chains (and/or components thereof) described herein and
in the Appendix of the 709 Application can operate accord-
ing to the methods illustrated by FIGS. 1, 2, and 5 (e.g., by
executing instructions embodied on a computer readable
medium), the systems/execution chains can also operate
according to other modes of operation and/or perform other
suitable procedures.

As noted above, various embodiments provide different
types of output for a user. Such output may take many forms,
including such things as alarms (e.g., electronic mail warn-
ings if performance or execution problems arise), scheduled
and/or ad hoc reports, and the like, and may be produced
electronically, in print, and/or by any other suitable tech-
nique. FIG. 6 illustrates a report 600 that can be produced in
accordance with one set of embodiments, although many
other types of reports are possible as well.

The exemplary report 600 of FIG. 6 displays information
for a single execution chain, which comprises nine transac-
tions between three different application components. The
exemplary report 600 is formatted as a table, with a header
row 605 and a plurality of data rows 610, each of which
provide data about either a request or a callout (using, for
example, information obtained from relevant Request
Records and Callout Records, as described above). There are
also two rows 615 that display supplemental information
obtained by the tracking framework.

The exemplary report 600 also comprises several columns
620, each of which provides relevant information gleaned
from the database records for each interaction between a
calling application and a called application (these columns
620 are only relevant to the callout/request rows 610, not to
the supplemental information rows 615.

In the exemplary report, there is a column 620aq that lists,
for each transaction in the execution chain, the ordered num-

US 9,244,749 B2

21

ber of the transaction along the execution chain. There is also
a column 6205 that lists the name of each application com-
ponent (or an identifier thereof), a column 620c¢ that describes
the depth, within the hierarchy of the execution chain, of each
transaction, a column 6204 that describes the record type
(e.g., Request Record, Callout Record, etc.), columns 620e
and 620f, respectively, that provide the service name and
function name that received the request or issued the callout
in each application component, a column 620g that indicates
whether the attempted transaction was successful, and several
columns 620%-620r that provide performance-tracking infor-
mation.

For example, one column 620/ in the exemplary report
displays (in milliseconds, in the illustrated example) the dura-
tion of each step in the execution chain. Because each step in
the execution chain is subsidiary to the initial request received
by the first application component in the execution chain
(which, in the illustrated case, is the QPortal application
component), the listed duration includes not only that com-
ponent’s execution time, but also the execution time of every
other component in the chain (as well as network latency).
Indeed, for each serial step in the execution chain, the dura-
tion listed in column 620/ will include the durations of each
subsequent step. Note, however, that this may not be the case
for steps performed in parallel, or steps otherwise at the same
hierarchical level of the execution chain. Thus, while the
duration of the transaction represented by row 610e will
include the durations of the transactions represented by rows
6107-610i, the duration of the transaction represented by row
6107 will not include the duration of the transactions repre-
sented by rows 610-610/, because those transactions, repre-
sented by rows 610/-610i, are all at the same level of the
hierarchy, indicating that all of the transactions were separate
callouts from the RXNPS application component (which may
have been performed serially and/or in parallel).

The duration of a particular transaction, as shown by col-
umn 620/, can be calculated, in some cases, by subtracting
the start time of the transaction (depicted by column 620i)
from the stop time of the same transaction (depicted by col-
umn 620j). Taking the first request (represented by row 610a)
as an example, the actual execution time attributable to the
QPortal application component in processing that request can
be measured by measuring the difference between that appli-
cation component’s start time and the start time of the subse-
quent callout (represented by row 6105), which measures
pre-callout processing, plus the difference between the stop
time of that callout and the stop time of the request itself,
which measures post-callout processing. These two values
are displayed in columns 620% and 620/, respectively, and the
sum of these values, which represents the actual execution
time of the QPortal application component in performing the
requested processing (without considering processing per-
formed by child application components), is displayed in
column 620m. Similar data is displayed for other displayed
requests in the execution chain (which are represented by
rows 610c and 6104, respectively).

In order to obtain an accurate view of the performance of
each application component, the network and middleware
latency (which consists of the difference between the duration
of a callout, from the perspective of the calling application,
and the request, from the perspective of the called applica-
tion), can be accounted for. Thus, although the duration of the
callout represented by row 6105 is 1348 ms, the time required
to process the corresponding request, represented by row
610c, is only 1344 ms. The difference in these two durations,
4 ms, is the network/middleware latency, and that value for
each callout, is displayed in column 620z.

20

35

40

45

55

22

The exemplary report 600 illustrated by FIG. 6, therefore,
provides a user with a detailed view into the performance of
the entire execution chain (or at least every monitored appli-
cation component within the chain). Additionally, in accor-
dance with some embodiments, the report can provide addi-
tional information, such as the supplemental information
shown inrows 6154 and 6155. This supplemental information
will be implementation-dependent, and various embodiments
will allow application component developers to return a vari-
ety of different types of supplemental information, depending
on the nature of the task at hand.

FIG. 7 provides a schematic illustration of one embodi-
ment of a computer system 700 that can perform the methods
provided by various other embodiments, as described herein,
and/or can function as an application server, database server,
web server, web client, and/or the like. It should be noted that
FIG. 7 is meant only to provide a generalized illustration of
various components, of which one or more (or none) of each
may be utilized as appropriate. FIG. 7, therefore, broadly
illustrates how individual system elements may be imple-
mented in a relatively separated or relatively more integrated
manner.

The computer system 700 is shown comprising hardware
elements that can be electrically coupled via a bus 705 (or
may otherwise be in communication, as appropriate). The
hardware elements may include one or more processors 710,
including without limitation one or more general-purpose
processors and/or one or more special purpose processors
(such as digital signal processing chips, graphics acceleration
processors, and/or the like); one or more input devices 715,
which can include without limitation a mouse, a keyboard
and/or the like; and one or more output devices 720, which
can include without limitation a display device, a printer
and/or the like.

The computer system 700 may further include (and/orbe in
communication with) one or more storage devices 725, which
can comprise, without limitation, local and/or network acces-
sible storage, and/or can include, without limitation, a disk
drive, a drive array, an optical storage device, solid-state
storage device such as a random access memory (“RAM”)
and/or aread-only memory (“ROM”), which can be program-
mable, flash-updateable and/or the like. Such storage devices
may be configured to implement any appropriate data stores,
including without limitation, various file systems, database
structures, and/or the like.

The computer system 700 might also include a communi-
cations subsystem 730, which can include without limitation
a modem, a network card (wireless or wired), an infra-red
communication device, a wireless communication device
and/or chipset (such as a Bluetooth™ device, an 802.11
device, a WiF1 device, a WiMax device, a WWAN device,
cellular communication facilities, etc.), and/or the like. The
communications subsystem 730 may permit data to be
exchanged with a network (such as the network described
below, to name one example), with other computer systems,
and/or with any other devices described herein. In many
embodiments, the computer system 700 will further comprise
a working memory 735, which can include a RAM or ROM
device, as described above.

The computer system 700 also may comprise software
elements, shown as being currently located within the work-
ing memory 735, including an operating system 740, device
drivers, executable libraries, and/or other code, such as one or
more application programs 745, which may comprise com-
puter programs provided by various embodiments, and/or
may be designed to implement methods, and/or configure
systems, provided by other embodiments, as described

US 9,244,749 B2

23

herein. Merely by way of example, one or more procedures
described with respect to the method(s) discussed above
might be implemented as code and/or instructions executable
by a computer (and/or a processor within a computer); in an
aspect, then, such code and/or instructions can be used to
configure and/or adapt a general purpose computer (or other
device) to perform one or more operations in accordance with
the described methods.

A set of these instructions and/or code might be encoded
and/or stored on a non-transitory computer readable storage
medium, such as the storage device(s) 725 described above.
In some cases, the storage medium might be incorporated
within a computer system, such as the system 700. In other
embodiments, the storage medium might be separate from a
computer system (i.e., a removable medium, such as a com-
pact disc, etc.), and/or provided in an installation package,
such that the storage medium can be used to program, con-
figure and/or adapt a general purpose computer with the
instructions/code stored thereon. These instructions might
take the form of executable code, which is executable by the
computer system 700 and/or might take the form of source
and/or installable code, which, upon compilation and/or
installation on the computer system 700 (e.g., using any of a
variety of generally available compilers, installation pro-
grams, compression/decompression utilities, etc.) then takes
the form of executable code.

It will be apparent to those skilled in the art that substantial
variations may be made in accordance with specific require-
ments. For example, customized hardware (such as program-
mable logic controllers, field-programmable gate arrays,
application-specific integrated circuits, and/or the like) might
also be used, and/or particular elements might be imple-
mented in hardware, software (including portable software,
such as applets, etc.), or both. Further, connection to other
computing devices such as network input/output devices may
be employed.

As mentioned above, in one aspect, some embodiments
may employ a computer system (such as the computer system
700) to perform methods in accordance with various embodi-
ments of the invention. According to a set of embodiments,
some or all of the procedures of such methods are performed
by the computer system 700 in response to processor 710
executing one or more sequences of one or more instructions
(which might be incorporated into the operating system 740
and/or other code, such as an application program 745) con-
tained in the working memory 735. Such instructions may be
read into the working memory 735 from another computer
readable medium, such as one or more of the storage device(s)
725. Merely by way of example, execution of the sequences
of instructions contained in the working memory 735 might
cause the processor(s) 710 to perform one or more procedures
of the methods described herein.

The terms “machine readable medium” and “computer
readable medium,” as used herein, refer to any medium that
participates in providing data that causes a machine to operate
in a specific fashion. In an embodiment implemented using
the computer system 700, various computer readable media
might be involved in providing instructions/code to proces-
sor(s) 710 for execution and/or might be used to store and/or
carry such instructions/code (e.g., as signals). In many imple-
mentations, a computer readable medium is a non-transitory,
physical and/or tangible storage medium. Such a medium
may take many forms, including but not limited to, non-
volatile media, volatile media, and transmission media. Non-
volatile media includes, for example, optical and/or magnetic
disks, such as the storage device(s) 725. Volatile media
includes, without limitation, dynamic memory, such as the

10

15

20

25

30

35

40

45

50

55

60

65

24

working memory 735. Transmission media includes, without
limitation, coaxial cables, copper wire and fiber optics,
including the wires that comprise the bus 705, as well as the
various components of the communication subsystem 730
(and/or the media by which the communications subsystem
730 provides communication with other devices). Hence,
transmission media can also take the form of waves (includ-
ing without limitation radio, acoustic and/or light waves, such
as those generated during radio-wave and infra-red data com-
munications).

Common forms of physical and/or tangible computer read-
able media include, for example, a floppy disk, a flexible disk,
a hard disk, magnetic tape, or any other magnetic medium, a
CD-ROM,; any other optical medium, punch cards, paper
tape, any other physical medium with patterns of holes, a
RAM, a PROM, and EPROM, a FLASH-EPROM, any other
memory chip or cartridge, a carrier wave as described here-
inafter, or any other medium from which a computer can read
instructions and/or code.

Various forms of computer readable media may be
involved in carrying one or more sequences of one or more
instructions to the processor(s) 710 for execution. Merely by
way of example, the instructions may initially be carried on a
magnetic disk and/or optical disc of a remote computer. A
remote computer might load the instructions into its dynamic
memory and send the instructions as signals over a transmis-
sion medium to be received and/or executed by the computer
system 700. These signals, which might be in the form of
electromagnetic signals, acoustic signals, optical signals and/
orthe like, are all examples of carrier waves on which instruc-
tions can be encoded, in accordance with various embodi-
ments of the invention.

The communications subsystem 730 (and/or components
thereof) generally will receive the signals, and the bus 705
then might carry the signals (and/or the data, instructions, etc.
carried by the signals) to the working memory 735, from
which the processor(s) 705 retrieves and executes the instruc-
tions. The instructions received by the working memory 735
may optionally be stored on a storage device 725 either before
or after execution by the processor(s) 710.

As noted above, a set of embodiments comprises systems
for tracking application performance. FIG. 8 illustrates a
schematic diagram of a system 800 that can be used in accor-
dance with one set of embodiments. The system 800 can
include one or more user computers 805. A user computer 805
can be a general purpose personal computer (including,
merely by way of example, desktop computers, laptop com-
puters, handheld computers, and the like, running any appro-
priate operating system, several of which are available from
vendors such as Apple, Microsoft Corp., and the like) and/or
a workstation computer running any of a variety of commer-
cially-available UNIX™ or UNIX-like operating systems. A
user computer 805 can also have any of a variety of applica-
tions, including one or more applications configured to per-
form methods provided by wvarious embodiments (as
described above, for example), as well as one or more office
applications, database client and/or server applications, and/
or web browser applications. Alternatively, a user computer
805 can be any other electronic device, such as a thin-client
computer, Internet-enabled mobile telephone, and/or per-
sonal digital assistant, capable of communicating via a net-
work (e.g., the network 810 described below) and/or of dis-
playing and navigating web pages or other types of electronic
documents. Although the exemplary system 800 is shown
with three user computers 805, any number of user computers
can be supported.

US 9,244,749 B2

25

Certain embodiments operate in a networked environment,
which caninclude a network 810. The network 810 can be any
type of network familiar to those skilled in the art that can
support data communications using any of a variety of com-
mercially-available (and/or free or proprietary) protocols,
including without limitation TCP/IP, SNA™, [PX™_ Apple-
Talk™, and the like. Merely by way of example, the network
810 can include a local area network (“LAN™), including
without limitation a fiber network, an Ethernet network, a
Token-Ring™ network and/or the like; a wide-area network;
a wireless wide area network (“WWAN™); a virtual network,
such as a virtual private network (“VPN”); the Internet; an
intranet; an extranet; a public switched telephone network
(“PSTN™); an infra-red network; a wireless network, includ-
ing without limitation a network operating under any of the
IEEE 802.11 suite of protocols, the Bluetooth™ protocol
known in the art, and/or any other wireless protocol; and/or
any combination of these and/or other networks.

Embodiments can also include one or more server comput-
ers 815. Each of the server computers 815 may be configured
with an operating system, including without limitation any of
those discussed above, as well as any commercially (or
freely) available server operating systems. Each of the servers
815 may also be running one or more applications, which can
be configured to provide services to one or more clients 805
and/or other servers 815.

Merely by way of example, one of the servers 815 may be
a web server, which can be used, merely by way of example,
to process requests for web pages or other electronic docu-
ments from user computers 805. The web server can also run
avariety of server applications, including HTTP servers, FTP
servers, CGI servers, database servers, Java servers, and the
like. In some embodiments of the invention, the web server
may be configured to serve web pages that can be operated
within a web browser on one or more of the user computers
805 to perform methods of the invention.

The server computers 815, in some embodiments, might
include one or more application servers, which can be con-
figured with one or more applications accessible by a client
running on one or more of the client computers 805 and/or
other servers 815. Merely by way of example, the server(s)
815 can be one or more general purpose computers capable of
executing programs or scripts in response to the user comput-
ers 805 and/or other servers 815, including without limitation
web applications (which might, in some cases, be configured
to perform methods provided by various embodiments).
Merely by way of example, a web application can be imple-
mented as one or more scripts or programs written in any
suitable programming language, such as Java™, C, C#™ or
C++, and/or any scripting language, such as Perl, Python, or
TCL, as well as combinations of any programming and/or
scripting languages. The application server(s) can also
include database servers, including without limitation those
commercially available from Oracle™, Microsoft™,
Sybase™, IBM™ and the like, which can process requests
from clients (including, depending on the configuration, dedi-
cated database clients, API clients, web browsers, etc.) run-
ning on a user computer 805 and/or another server 815. In
some embodiments, an application server can create web
pages dynamically for displaying the information in accor-
dance with various embodiments. Data provided by an appli-
cation server may be formatted as one or more web pages
(comprising HTML, JavaScript, etc., for example) and/or
may be forwarded to a user computer 805 via a web server (as
described above, for example). Similarly, a web server might
receive web page requests and/or input data from a user
computer 805 and/or forward the web page requests and/or

20

30

40

45

26

input data to an application server. In some cases a web server
may be integrated with an application server.

In accordance with further embodiments, one or more serv-
ers 815 can function as a file server and/or can include one or
more of the files (e.g., application code, data files, etc.) nec-
essary to implement various disclosed methods, incorporated
by an application running on a user computer 805 and/or
another server 815. Alternatively, as those skilled in the art
will appreciate, a file server can include all necessary files,
allowing such an application to be invoked remotely by a user
computer 805 and/or server 815.

It should be noted that the functions described with respect
to various servers herein (e.g., application server, database
server, web server, file server, etc.) can be performed by a
single server and/or a plurality of specialized servers, depend-
ing on implementation-specific needs and parameters.

In certain embodiments, the system can include one or
more databases 820. The location of the database(s) 820 is
discretionary: merely by way of example, a database 820a
might reside on a storage medium local to (and/or resident in)
a server 815a (and/or a user computer 805). Alternatively, a
database 8205 can be remote from any or all of the computers
805, 815, so long as it can be in communication (e.g., via the
network 810) with one or more of these. In a particular set of
embodiments, a database 820 can reside in a storage-area
network (“SAN”) familiar to those skilled in the art. (Like-
wise, any necessary files for performing the functions attrib-
uted to the computers 805, 815 can be stored locally on the
respective computer and/or remotely, as appropriate.) In one
set of embodiments, the database 835 can be a relational
database, such as an Oracle database, that is adapted to store,
update, and retrieve data in response to SQL-formatted com-
mands. The database might be controlled and/or maintained
by a database server, as described above, for example.

While certain features and aspects have been described
with respect to exemplary embodiments, one skilled in the art
will recognize that numerous modifications are possible. For
example, the methods and processes described herein may be
implemented using hardware components, software compo-
nents, and/or any combination thereof. Further, while various
methods and processes described herein may be described
with respect to particular structural and/or functional compo-
nents for ease of description, methods provided by various
embodiments are not limited to any particular structural and/
or functional architecture but instead can be implemented on
any suitable hardware, firmware and/or software configura-
tion. Similarly, while certain functionality is ascribed to cer-
tain system components, unless the context dictates other-
wise, this functionality can be distributed among various
other system components in accordance with the several
embodiments.

Moreover, while the procedures of the methods and pro-
cesses described herein are described in a particular order for
ease of description, unless the context dictates otherwise,
various procedures may be reordered, added, and/or omitted
in accordance with various embodiments. Moreover, the pro-
cedures described with respect to one method or process may
be incorporated within other described methods or processes;
likewise, system components described according to a par-
ticular structural architecture and/or with respect to one sys-
tem may be organized in alternative structural architectures
and/or incorporated within other described systems. Hence,
while various embodiments are described with—or with-
out—certain features for ease of description and to illustrate
exemplary aspects of those embodiments, the various com-
ponents and/or features described herein with respect to a
particular embodiment can be substituted, added and/or sub-

US 9,244,749 B2

27

tracted from among other described embodiments, unless the
context dictates otherwise. Consequently, although several
exemplary embodiments are described above, it will be
appreciated that the invention is intended to cover all modi-
fications and equivalents within the scope of the following
claims.

What is claimed is:

1. A method for establishing a framework for end-to-end
traceability and performance monitoring of an execution
chain, the method comprising:

maintaining an end-to-end execution chain between a first

application component and a second application com-
ponent, using traceability data, the traceability data
including traceability data for each of the first applica-
tion component, the second application component, and
any intermediate application components of the end-to-
end execution chain; and

generating a report comprising the end-to-end execution

chain, the report listing an actual execution time attrib-
utable to each application component in the end-to-end
execution chain in processing each request, wherein the
actual execution time, for each request by each applica-
tion component, is measured by adding a pre-callout
processing time and a post-callout processing time, the
pre-callout processing time being measured by measur-
ing a difference between a start time of each application
component and a start time of a subsequent application
callout, and the post-callout processing time being mea-
sured by measuring a difference between a stop time of
the subsequent callout and a stop time of each request.

2. The method of claim 1, further comprising:

establishing a parent-child relationship between a callout

record and a second request record that are stored in a
database, the callout record indicating that the first appli-
cation component has initiated an application callout to
a second application component, the second request
record indicating start of execution of the second appli-
cation component.

3. The method of claim 2, wherein establishing the parent-
child relationship between the callout record and the second
request record comprises assigning a Record ID of the callout
record as a Parent ID of a first request record when generating
and/or storing the second request record, wherein the first
request record is stored in the database and indicates start of
execution of the first application component.

4. The method of claim 3, further comprising:

storing the first request record in the database by generat-

ing the first request record and storing the generated first
request record in the database; and

storing the callout record in the database by generating the

callout record and storing the generated calloutrecord in
the database.

5. The method of claim 1, further comprising:

storing, in a database, a plurality of request records and a

plurality of callout records.

6. The method of claim 5, further comprising:

analyzing the stored request records and callout records to

determine one or more request durations and one or
more callout durations.

7. The method of claim 5, further comprising:

analyzing the stored request records and callout records to

identify a trace of execution between the first application
component and the second application component.

8. An apparatus, comprising:

one or more non-transitory computer-readable storage

media having encoded thereon one or more sets of
instructions executable by one or more computers to

10

20

35

40

45

50

60

65

28

perform one or more operations, the one or more sets of

instructions collectively comprising:

instructions for maintaining an end-to-end execution
chain between a first application component and a
second application component, using traceability
data, the traceability data including traceability data
for each of the first application component, the second
application component, and any intermediate appli-
cation components of the end-to-end execution chain;
and

instructions for generating a report comprising the end-
to-end execution chain, the report listing an actual
execution time attributable to each application com-
ponent in the end-to-end execution chain in process-
ing each request, wherein the actual execution time,
for each request by each application component, is
measured by adding a pre-callout processing time and
a post-callout processing time, the pre-callout pro-
cessing time being measured by measuring a differ-
ence between a start time of each application compo-
nent and a start time of a subsequent application
callout, and the post-callout processing time being
measured by measuring a difference between a stop
time of the subsequent callout and a stop time of each
request.

9. The apparatus of claim 8, wherein the first application
component is a first application layer of a first application,
and wherein the second application component is a second
application layer of the first application.

10. The apparatus of claim 8, wherein the first application
component is a first application, and wherein the second
application component is a second application.

11. The apparatus of claim 10, wherein:

the one or more computers comprise a first computer sys-

tem, on which the first application executes, and a sec-
ond computer system, on which the second application
executes;

the one or more sets of instructions comprise a first set of

instructions executable by the first computer system and
a second set of instructions executable by the second
computer system,

the first set of instructions comprises:

instructions for generating traceability data for a first appli-

cation component before the first application compo-
nent passes application data to a second application
component; and

instructions for passing the traceability data to the second

application component with an auxiliary facility; and
the second set of instructions comprises:

instructions for receiving the traceability data at the second

application component;

instructions for generating, with the second application

component, a database record to indicate that the first
application passed the message/data to the second appli-
cation; and

instructions for storing the traceability data in the database

record.

12. The apparatus of claim 11, wherein the application data
comprises a message from the first application component to
the second application component.

13. The apparatus of claim 11, wherein the database record
is a request record, and wherein the traceability data com-
prises one or more identifiers selected from the group con-
sisting of: a calloutrecord ID, a correlation ID, and Ul session
1D.

14. The apparatus of claim 11, wherein the database record
is a callout record, and wherein the traceability data com-

US 9,244,749 B2

29

prises one or more identifiers selected from the group con-
sisting of: a request record ID, a correlation ID, and UI ses-
sion ID.

15. The apparatus of claim 11, wherein the auxiliary facil-
ity comprises a protocol-specific header of a protocol used to
transmit the application data.

16. The apparatus of claim 15, wherein the protocol spe-
cific header is selected from the group consisting of an HTTP
header, a SOAP header, an Information Bus header, and a
JMS header.

17. The apparatus of claim 11, wherein the instructions for
passing the traceability data comprise instructions for placing
the traceability data on a message queue.

18. The apparatus of claim 8, wherein the first application
component and the second application component execute on
the same computer system.

19. A computer system, comprising:

one or more processors; and

one or more computer-readable storage media having

encoded thereon one or more sets of instructions execut-

able by one or more computers to perform one or more

operations, the one or more sets of instructions collec-

tively comprising:

instructions for maintaining an end-to-end execution
chain between a first application component and a
second application component, using traceability
data, the traceability data including traceability data
for each of the first application component, the second
application component, and intermediate application
components of the end-to-end execution chain; and

instructions for generating a report comprising the end-
to-end execution chain, the report listing an actual
execution time attributable to each application com-
ponent in the end-to-end execution chain in process-

15

20

25

30

ing each request, wherein the actual execution time, 35

for each request by each application component, is
measured by adding a pre-callout processing time and
a post-callout processing time, the pre-callout pro-
cessing time being measured by measuring a differ-

30

ence between a start time of each application compo-
nent and a start time of a subsequent application
callout, and the post-callout processing time being
measured by measuring a difference between a stop
time of the subsequent callout and a stop time of each
request.
20. The computer system of claim 19, wherein the one or
more sets of instructions collectively further comprise:
instructions for assigning a correlation identifier to a first
request record that is stored in a database to identify an
instance of the application, the first request record indi-
cating start of execution of the first application compo-
nent;
instructions for assigning the correlation identifier to a
callout record that is stored in the database, the callout
record indicating that the first application component
has initiated an application callout to a second applica-
tion component; and
instructions for assigning the correlation identifier to a
second request record that is stored in the database, the
second request record indicating start of execution of the
second application component.
21. The computer system of claim 19, wherein the one or
more sets of instructions collectively further comprise:
instructions for recording, in the first request record, a first
begin time of execution of the first application compo-
nent and a first end time of execution of the first appli-
cation component;
instructions for recording, in the callout request record, a
second begin time of the callout and a second end time of
the callout;
instructions for recording, in the second request record, a
third begin time of the second request and a third end
time of the second request; and
instructions for calculating, based on one or more of the
begin times and end times, durations of each of the initial
request, the callout, and the request.

#* #* #* #* #*

